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∗Unité Mixte du CRNS et de l’Ecole Normale Supérieure associée à l’université Pierre et Marie Curie 6,
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1. Introduction

In [1 – 3] the author of this note and his collaborators have proposed to look at the fi-

nite temperature phase of N = 4 SYM; general arguments lead to the prediction that the

dynamics of low-lying excitations would be well described by the hydrodynamic approxima-

tion, where the only relevant degrees of freedom are the densities of conserved charges. The

conjecture was borne out by the computation of the correlators of conserved currents, that

exhibited the expected analytic structure, namely a pole for small frequency and momen-

tum corresponding to excitations with a diffusive or a wave-like behavior. The coefficients

entering the dispersion relations of these excitations, called transport coefficients [4], cap-

ture the low-energy dynamics of the finite-temperature phase. We computed the transport

properties of the stress-energy tensor and the R-currents. The calculation was performed

holographically, using the known correpondence between SYM in 4 dimensions and type

IIB supergravity in the AdS5 × S5 background [5]. This means that the results were valid

in the limit of infinite number of colors and infinite ’t Hooft coupling.

Our calculation has subsequently been extended in very many directions, mostly trying

to make predictions in more realistic theories by deforming the original setup, e.g. break-

ing conformal invariance, supersymmetry, adding flavors etc. (see [6] for a partial list of

relevant references).
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In this paper we fill a gap in the analysis of the linearized hydrodynamics of N = 4

SYM: we consider the transport properties associated to the fluctuations of the supersym-

metry current. It was first pointed out in [7] that a supersymmetric thermal medium must

have a fermionic collective excitation, that they called phonino; in that paper they dis-

cussed the case of the Wess-Zumino model, and determined the properties of the phonino

for moderately small temperatures, but could not discuss the ultrarelativistic case, as it

was too complicated. As far as we know, there have not been other attempts at comput-

ing the phonino spectrum perturbatively. The outline of this paper is the following: in

section 2 we discuss the prediction for the correlators of supercurrents following from the

hydrodynamical Ansatz; in section 3 we detail the holographic computation of the correla-

tors, which is essentially the solution of the classical equations of motion for the gravitino

in the dual geometry. In the final section 4 we summarize and briefly discuss our results.

2. Supersymmetric hydrodynamics

2.1 The phonino

We follow the treatment of [8], to which we refer for a more extensive discussion. We

consider a 4-dimensional supersymmetric field theory. The density of the supersymmetry

charge should be included in the list of effective degrees of freedom in the long-wavelength

regime, by the same arguments that hold for any conserved charge and imply that it will

relax with arbitrarily long time scale. In order to turn on a vev for the density of the

supercurrent we may introduce a fermionic chemical potential µα, µ̄α̇. In the equilibrium

state, the supersymmetry algebra implies 1

〈Sα
i 〉 = −β 〈Tij〉(γj µ̄)α ,

〈S̄α̇
i 〉 = −β 〈Tij〉(γjµ)α̇ . (2.1)

The linearized hydrodynamics deals with small fluctuations out of equilibrium. We assume

that the relevant degrees of freedom are contained in the density of charge Sα
t = ρα, and

a constitutive relation is needed in order to express the other components of the current

in terms of ρα. The most general expression, linear in fields and derivatives, and assuming

that no other vevs and chemical potentials are turned on, is the following

Sα
i = −Ds∂iρ

α −Dσ(γij∂
jρ)α − P

ε
(γiγ

1ρ)α (2.2)

The third term in this expression is fixed by the susy algebra, and P, ε are the pressure

and energy density in the equilibrium state. If the theory is conformal P = ε/3; moreover

γiSi is related by susy to T i
i and it has to vanish; this implies that Ds = Dσ. At this order,

then, there is only one transport coefficient that captures the dynamics of the fermionic

fluctuations. The conservation of the current, ∂tρ+∂jS
j = 0, closes the system of equations

and allows one to find the existence of waves propagating in the medium; they are solutions

of the form

ρα(t) = e−Dsk2t
(

δβ
αcos(kvst) + (ki · γiγ1)sin(kvst)

)

ρ(0) (2.3)

1See appendix A for our conventions on the gamma matrices.
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with a velocity vs = P
ε , to be compared with the usual speed of sound c2s = ∂P

∂ε .

The transport coefficient Ds determines the damping of this excitation, that has been

called “phonino”.

In presence of a supercharge density, other conserved currents can also be affected via

non-linear terms in their constitutive relations. The R-current receives a contribution

J i
R = . . .− P

ε2
ρ̄γiρ

(where the dots are for terms not depending on ρ) and the coefficient Ds enters in the

R-current correlators; in [8] it is shown that such non-linear and non-derivative terms in

the constitutive relations make the correlator decay more slowly in time, with a power

law instead of the exponential decay characteristic of diffusion processes. The leading

large-time behavior of R-current correlators was found to be

〈Jk
R(t)J l

R(0)〉 ∼ δkl

12(πt)3/2

(

T

w̄

χR

(DR + γη)3/2
+

1

4

c2s
(2Ds)3/2

)

(2.4)

where w̄ = ε+P, γη = η/w̄, χR and DR are the charge susceptibility and diffusion constant.

All these quantities have been computed for N = 4 SYM, with the exception (up to now)

of Ds.

2.2 Supercurrent correlators

The presence of the fluctuation mode (2.3) has to be reflected in the structure of the

correlators of operators with the same quantum numbers (this is the statement of the

fluctuation-dissipation theorem). In particular we are interested in the retarded correlator

of the supercurrents Si, defined as

Gα̇β
ij (k) =

∫

d4xe−ik·xθ(x0)〈{S̄α̇
i (x), Sβ

j (0)}〉 . (2.5)

The correlator (2.5) is constrained by the Ward identities:

kiGij = 0 , γiGij = Gij γ
j = 0 . (2.6)

The first equation is simply the conservation of the current, while the second follows from

superconformal invariance as already mentioned. The correlator can be built out of pro-

jectors, that automatically implement the identities. First we analyse the case of zero

temperature, where the correlator has to respect the 4-dimensional Lorentz invariance.

The projector on the transverse gamma-traceless part of a spinor-vector is

P j
i = δj

i −
1

3

(

γi −
ki 6k
k2

)

γj − 1

3k2
(4ki − γi 6k) kj . (2.7)

The correlator can then be written as Gij = P k
i MklP

l
j. The matrix M can be expanded

on a basis of gamma matrices, and the only form allowed by the symmetries is

Mkl = A(k2) 6k ηkl .

– 3 –
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The zero-temperature correlator is then completely fixed up to a scalar function of mo-

menta, A(k2).

At finite temperature, only spatial rotational invariance is preserved, and the correlator

can depend, apart from k, also on another vector that is the velocity of the fluid; since it

is at rest, this is ui = (1, 0, 0, 0). Let us write ki = (ω,q).

We can form another projector with the properties of (2.7), that is also transverse

to ui:

P T
11 = P T

1i = 0

P T
jk = δjk − 1

2

(

γj −
qj 6q
q2

)

γk − 1

2q2
(3qj − γj 6q)qk (2.8)

and define PL = P − P T so that PLP T = 0. The correlator can have several possible

structures: PLPL, P TP T , and PLP T +P TPL. We are interested in the fluctuations of the

density, which are contained in the longitudinal part, so we can write

Gij = PL
ikMkmP

L
mj (2.9)

and now the form of M allowed by the symmetries is

Mkm = 6k Ckm + 6uC ′
km ,

Ckm = a (ηkm + b ukum) , (2.10)

C ′
km = a′(ηkm + b′ukum) .

Not all the functions a, b, a′, b′ are independent, it turns out that the following combinations

vanish inside the projectors:

6k
(

ηkm +
3k2

2q2
ukum

)

, (2.11)

−6k ω
q2
ukum + 6u

(

ηkm +
k2

2q2
ukum

)

. (2.12)

Thus for generic values of the momenta we can fix two of the parameters. We haven’t

been able to find a particularly nice canonical choice of structures. The correlator is then

determined, in this channel, by two functions of q, ω. The hydrodynamical prediction is

that these functions should have a pole, in the complex ω plane, that goes to the origin

as q → 0.

3. Holographic derivation

3.1 Zero temperature

The two-point correlator of the supersymmetry current in N = 4 SYM at zero temperature

has been computed in [9, 10]. We recall in this section the main points of the derivation,

to be used for reference in the next sections.

– 4 –
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The operator dual to the susy current is the gravitino, a Rarita-Schwinger field prop-

agating in the dual AdS geometry. We follow here the presentation of [11]. The bulk

action is

S =

∫

dd+1x
√
g
(

Ψ̄µΓµνρDνΨρ −mΨ̄µΓµνΨν

)

, (3.1)

where Γµ = eµaγa. For the time being we can leave d and m unspecified. The action is

evaluated on the (Euclidean) AdSd+1 background with metric

ds2 =
1

x2
0

(dx2
0 + δijdxidxj) . (3.2)

The study of the solutions of the equations of motion in the neighborhood of the boundary

x0 = 0 shows that components of different chirality have different asymptotic behavior. In

terms of the spinor ψa = e µ
a Ψµ one has

ψ+
i (x0, xi) = (x0)d/2−mϕi(x) + . . . ,

ψ−
i (x0,x) = (x0)d/2+mχi(x) + . . . (3.3)

The solution is required to be regular in the bulk. It is possible to show that this

imposes a relation between ϕi and χi, so that only one of them can be assigned as a

boundary condition. Without loss of generality one can take m > 0, then the appropriate

boundary spinor can be shown to be ϕ. Moreover, it has to satisfy a constrain γi ϕi = 0.

The complete solution can then be expressed in terms of the boundary data:

ψi(x0,k) = x
d/2−m
0

[

ϕi −
i6k
k

Km−1/2

Km+1/2
ϕi (3.4)

−
(

ix0ki

Km−1/2Km+3/2 −K2
m+1/2

Km+1/2
+

(

i6kγi

k

)

Km−1/2

)

×

×2kj 6k
k2

1

(2m + d− 1)Km+1/2 − 2x0kKm+3/2
ϕj

]

.

Here the Bessel functions have argument Kν(kx0). A similar expression holds for the

conjugate field ψ̄.

We recall here one of the basic tenets of the AdS/CFT correspondence: the on-shell

action, with given asymptotic conditions for the fields, is the generating functional for

the correlators of CFT operators. The bulk action vanishes on-shell for fermionic fields,

therefore the only contribution comes from the boundary action [12]

Sbdy =

∫

ddx
√
hhijΨ̄iΨj . (3.5)

Here hij is the induced metric on the boundary. The action has to be regularized by

evaluating the integral on a surface x0 = ǫ, and taking the limit ǫ → 0. In the limit,

the expression contains divergencies that in principle should be subtracted by introducing

suitable counterterms, however one can see that the divergent pieces are analytic in k,

– 5 –
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therefore they only affect the correlators by contact terms. Finally, the regularized action

can be written as

Sbdy =

∫

dk δij (ϕ̄i(−k)χj(k) + χ̄i(−k)ϕj(k)) , (3.6)

the boundary value ϕ is the source for the field theory operator, and the appearance of

a non-trivial correlator is due to the nonlocal relation that expresses χ in terms of ϕ, as

implicitly given in (3.4). The result is, up to an overall factor,

Gij = Πr
i

6k
k

(δrs −
2(2m + 1)

(d+ 2m+ 1)

krks

k2
) Πs

j , (3.7)

where Πr
i = δr

i − 1
dγiγ

r is the projector on the gamma-traceless part, since the source is

gamma-traceless. The correlator is transverse, kiGij = 0, for m = d−1
2 , that is when the

gravitino is massless, as it should be. In the case of interest, d = 4 and m = 3/2, in units

of the AdS radius.

3.2 Finite temperature

3.2.1 The gravitino in the near-extremal 3-brane background

In order to compute the correlator at finite-temperature, we need to study the Rarita-

Schwinger equation in the background of a non-extremal black 3-brane. In this case we

are not able to solve the equations for generic mass and dimension, so we work directly in

d = 4 and m = 3/2. The near-horizon geometry has the following metric:

ds2 =
π2T 2R2

u

(

−f(u)dt2 + dx2 + dy2 + dz2
)

+
R2

4f(u)u2
du2 (3.8)

where f(u) = 1 − u2.

The radial coordinate u ∈ [0, 1]; the boundary is at u = 0 and there is a horizon at

u = 1. Near the boundary, u is related to x0 of the previous section by u = x2
0. The

covariant derivative on a spinor, in this background, is

Dµ = ∂µ +
1

4
ωab

µ γab , (3.9)

i.e.

Du = ∂u ,

Di = ∂i +
1

2
ω

5(i)
i γ5(i) , (3.10)

where i = t, x, y, z and (i) = 1, 2, 3, 4. The non-vanishing components of the spin connec-

tion are

ω51
t =

πT (1 + u2)√
u

ω52
x = ω53

y = ω54
z = πT

√

f

u

– 6 –
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The metric (3.8) satisfies Rµν = Λgµν with Λ = −4/R2.

The Rarita-Schwinger equation is:

ΓµρσDρΨσ −mΓµνΨν = 0 . (3.11)

The equation is invariant under a gauge transformation parametrised by an arbitrary

spinor ǫ:

δΨµ = Dµǫ +
1

3
mΓµǫ . (3.12)

We show in appendix B that the RS equations imply, in d space-time dimensions,
(

2 − d

4
Λ −m2d− 1

d− 2

)

Γ · Ψ = 0 . (3.13)

For a generic value of the mass, (3.13) implies Γ · Ψ = 0, but for d = 5, Λ = −4/R2 and

mR = 3/2, the coefficient in the brackets vanishes, so the constraint is not implied by the

equations of motion. However, it can still be imposed as a gauge-fixing condition. We

will work in this gauge. The relation (B.2) then implies that D · Ψ = 0. In holographic

computations it would be perhaps more natural to impose an “axial” gauge Ψu = 0, but

we were not able to solve the equations of motion in that gauge; at the level of two-point

functions it does not make a difference, but it could be an issue in the computation of

higher-order correlators.

The equations of motion in this gauge can be written as

Γµ (DµΨν −DνΨµ) +mΨν = 0 (3.14)

Explicitly, and again redefining the field as ψa = eµaΨµ, eqs. (3.14) read (ψ′ = ∂/∂uψ):

γ5ψ′
5 +

1

2πT
√
uf

(

1√
f
γ1∂t + γj∂j

)

ψ5

+
2u2 − 3

2uf
γ5ψ5 +

u

f
γ1ψ1 +

mR

2u
√
f
ψ5 = 0 (3.15)

γ5ψ′
1 +

1

2πT
√
uf

(

1√
f
γ1∂t + γj∂j

)

ψ1

+
u2 − 2

2uf
γ5ψ1 +

1 + u2

2uf
γ1ψ5 +

mR

2u
√
f
ψ1 = 0 (3.16)

γ5ψ′
k +

1

2πT
√
uf

(

1√
f
γ1∂t + γj∂j

)

ψk

+
u2 − 2

2uf
γ5ψk − 1

2u
γkψ5 +

mR

2u
√
f
ψk = 0 (3.17)

j, k = x, y, z

Even though we have fixed a gauge, there is still a residual gauge symmetry parametrised

by ǫ such that 6Dǫ+
5m

3
ǫ = 0, or

γ5ǫ′ +
1

2πT
√
uf

(

1√
f
γ1∂t + γj∂j

)

ǫ+

(

u2 − 2

2uf
γ5 +

5mR

6u
√
f

)

ǫ = 0 . (3.18)

– 7 –
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Notice that this equation determines only the radial profile of ǫ, leaving arbitrary depen-

dence on the spacetime coordinates.

3.2.2 Solution of the equations of motion

The equations (3.15), (3.16), (3.17) are a complicated system that cannot be solved exactly.

We want to solve them in perturbation theory in the momentum. We consider a fluctuation

with a definite momentum kµ = 2πT (w, 0, 0, q).
It is useful to decompose the fluctuations of the fields according to their spin under

the unbroken transverse O(2) (rotations in the xy plane). There is one component of spin

3/2, given by η ≡ γ2ψ2 − γ3ψ3, and four components of spin 1/2, given by ψ1, ψ4, ψ5

and φ ≡ γ2ψ2 + γ3ψ3. Components of different spin are decoupled, and we are interested

in the sector of spin 1/2, since it contains the time component of the gravitino, which is

dual to the supercharge density on the boundary, and we expect the correlators of the

charge density to exhibit the hydrodynamic behavior. In this sector we can then set η = 0.

Moreover, we can use the matrix γ23 as a chirality matrix; it commutes with the evolution,

as one can see by inspection of the e.o.m., therefore we can choose to study the part of

definite γ23 chirality; the number of components is then reduced by half.

A further simplification comes from the fact that the gauge condition γ5ψ5 +γiψi = 0,

together with the equations of motion, yields the following condition (compare with (2.17)

of [9]):

(

4γ5 6P +
u2 − 3√
uf

− 3√
u
γ5

)

γiψi +

(

2u3/2

√
f

γ1 − 4iw√
f
γ5

)

ψ1 − 4iqγ5 ψ4 = 0 (3.19)

where 6P = −iw/√fγ1 + iqγ4.

We can use the relation (3.19) to solve for γ · ψ ≡ γiψi in terms of ψ1 and ψ4. Then

we derive a system of equations for the two latter fields. Again we consider the γ23-chiral

part. Finally, we have a system of 4 scalar equations for the remaining components that we

write as a 4-vector X = (ψ+
1 , ψ

−
1 , ψ

+
4 , ψ

−
4 ) (here the superscript refers to the usual chirality

in 4d).

The resulting system has regular singular points at the boundary and at the horizon.

The local solutions at the horizon are

(1 − u)−
3

4
−iw

2 (i, 1, 0, 0)

(1 − u)−
1

4
−iw

2 (0, 0, i, 1)

(1 − u)−
3

4
+iw

2 (−i, 1, 0, 0)

(1 − u)−
1

4
+iw

2 (0, 0,−i, 1)

The first two eigenvectors corrispond to the incoming-wave boundary condition. As the

previous finite-temperature computations have shown [2], one has to impose incoming-wave

boundary condition at the horizon in order to recover the retarded correlator. The form of

the eigenvalues shows that we can eliminate the outgoing wave solutions by imposing the

boundary condition (1 + iγ5)ψ1,4 = 0, or ψ+ = iψ−.

– 8 –
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The solution at order zero with these boundary conditions is

X(0) = f−3/4











i u9/4
(

2 −√
f
)

(1 +
√
f)−1/4α0

(1 +
√
f)1/4

(

2 +
√
f
)

u7/4α0

iu1/4
√
f
(

1 +
√
f
)3/4 (√

fα0 + iβ0

)

iu7/4
√
f
(

1 +
√
f
)−3/4 (

i
√
fα0 + β0

)











(3.20)

The solution depends on two parameters, α0 and β0. It can be checked that under the

action of the residual gauge transformation (3.25),

δα0 = ia+, δβ0 = −a+.

The combination α0 + iβ0 is gauge invariant. We could use this freedom to fix one of

the two parameters to zero, however we find it convenient not to do so and to keep the

gauge invariance. At the next order, we have an explicit solution X(1), whose form is very

complicated, and is written in appendix C. The important point is that in solving the

equations in perturbation theory, at every stage there are 4 new integration constants to

be determined. Again two of them can be fixed by imposing the incoming-wave condition

at the horizon. A natural choice would be to require that each component has a prescribed

behavior near the horizon, namely

ψ ∼ f−iw/2(1 + F (u))

with F a function of order 1 in momenta, and such that F (u = 1) = 0. It turns out that

this requirement is incompatible with the gauge symmetry. However, the two remaining

integration constants can be reabsorbed into a redefinition of α0 and β0 to first order in

momenta. It is not necessary then to keep track of them explicitly if we do not assume

that α, β are homogeneous functions of the momenta. The following non-obvious change

of variables is convenient

α =
α0 + iβ0

2
, β =

(q− 6w)α0 − iqβ0

2
. (3.21)

The boundary value of the spinors is given in terms of these parameters by
(

ψ+
1

ψ+
4

)

∼ 2(2u)1/4

(

β

(i
√

2 + 10
3 q + 2w(5 −

√
2 L + 12wq−3w))α + 3q−wq−3wβ) (3.22)

where  L = log
(

1 +
√

2
)

. Solving for α, β in terms of ϕ1, ϕ4 yields

(

α

β

)

= 2−5/4

(

(3q−w)ϕ1−(q−3w)ϕ4

P (q,w)

ϕ1

)

(3.23)

where

P (q,w) = −
√

2i(q− 3w) − 10

3
q2 + 6w2 + 2

√
2 Lw(q− 3w) .

This polynomial has a zero for small momenta atw =
q
3
− 4

√
2i

9
q2 + O(q4) .

– 9 –
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This pole corresponds to the propagation of a mode with speed v = 1
3 and an attenuation

given by the imaginary part of the dispersion relation. The value we find corresponds to a

diffusion constant

2πTDs =
4
√

2

9
(3.24)

This is our main result.

The reader may have noticed that while α was supposed to be a gauge-invariant quan-

tity, its solution in terms of the boundary value is not easily recognized as such. However,

just as in the zero-temperature case, the boundary value of the spinor is traceless, and

the residual gauge transformation preserves this property. From (3.18) we find that the

asymptotic boundary behavior of the gauge parameter is

ǫ+ = a+u
−1/4 − 1

3
i6ka−u11/4 ,

ǫ− = a−u
9/4 − 1

2
i6ka+u

1/4 , 6k = −wγ1 + qγ4 (3.25)

The transformation (3.25) acts on the boundary values as

δψi =

(

ki −
1

4
6kγi

)

a+

δϕ1 ∝ (q− 3w)a+ (3.26)

δϕ4 ∝ (3q− w)a+

and the combination appearing in α is invariant under this transformation.

In order to compute the correlator we need to find the negative-chirality component

of the fields at the boundary. The asymptotic behavior of the negative chirality part is

ψ− ∼ u3/4χ̃+ u7/4χ

and since in the boundary action the determinant of the induced metric gives a factor of

1/u2, and ϕ ∼ u1/4, one can see that χ̃ contributes to the divergent part of the action,

that has to be subtracted in the regularization. The subleading term χ is the one that

contributes to the finite part of the action. It is given by

2−1/4

(

χ1

χ4

)

=
3αq− 3w ( q

−w) +
βq− 3w ( 3

−1

)

(3.27)

The other components χ2, χ3 are determined by the algebraic constraints γiχi = 0 and

γ2χ2 − γ3χ3 = 0.

We can write the solution as a sum of two terms that depend on α and β respectively.

Let us consider the α-dependent part: it depends on ϕi only through the gauge-invariant

quantity α, and it is transverse: kiχi = 0; since the source is gamma-traceless, it is clear

that inserting this term in the action (3.6) yields a correlator with the right properties,

namely a conserved and gamma-traceless one. We can also put the result in a covariant

form. We need to repeat the analysis for the components of the fields with the opposite γ23
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chirality. The equations are the same after the exchange ψ4 → −ψ4, q → −q. At the end

we find an expression for the correlator that matches the general form (2.9), (2.10), with

a = 0, b′ =
2

3
(3.28)

a′ =
81

2
√

2

(q2 −w2)2

(q2 − 9w2)2
.

The second term in (3.27), depending on β, is more troubling since it is gauge-

dependent. However it does not contain the hydrodynamic pole, and under a gauge trans-

formation the denominator is cancelled; this means that the contribution of χβ generates

a correlator that satisfies the Ward identities up to contact terms. In general we would ex-

pect such contact terms, on the basis of the following argument: the susy transformations

in the bulk do not act only on the gravitino, but also on the metric (and on the gauge field,

although this is not relevant for us). The susy variation of the vielbein is δeaµ = ǭγaΨµ.

When we try to prove the Ward identities, we should also include the boundary terms that

depend on the metric; the boundary action is then: Sbdy = S0 + S2, where S0 contains

the Gibbons-Hawking term and the boundary volume, and S2 is the term quadratic in the

fermions that we have been using so far. Then under a susy transformation we have

0 =
δS

δΨi

(

Diǫ+
m

3
Γiǫ

)

+
δS

δeai
ǭγaΨi .

Taking the derivative with respect to Ψ̄, and then setting Ψ to zero, we find the modified

Ward identity

〈∂iS
i S̄j〉 +

m

3
〈(γ · S)S̄j〉 + (γi) 〈T ij〉 = 0 (3.29)

However the precise form of the contact terms we find does not match the expectations,

since β only depends on ϕ1 whereas the expected form, as appears in the formula above,

looks like 〈T ij〉γiϕj and so it depends also on ϕ4. It is possible that one should add some

additional counterterms to the regularized action in order to restore the correct Ward

identities [14], but we will not attempt to find them in the present paper. Nevertheless, we

can still extract some information from the β-terms.

Given the structure of the boundary action, one sees that χ as a function of ϕ can be

directly interpreted as the expectation value of the supercurrent in the presence of sources.

In the hydrodynamic regime, they should then satisfy the constitutive relations (2.2). It

is possible to check this on our solution, in an expansion in momenta. Notice first that χβ

is of order -1, whereas α and χα start from order 0. Then the constituent relation at the

lowest order, that is -1 in our case, reads

S4
(−1) =

1

3
S1

(−1)

and it is satisfied by the second term of (3.27). At the next order, from (2.2) we derive

S4
(0) =

1

3
S1

(0) + iDs (2πT q)S1
(−1)

– 11 –



J
H
E
P
0
2
(
2
0
0
9
)
0
3
4

and one can check that this relation is satisfied, again only up to contact terms, with Ds

given by the expression in (3.24). This provides an alternative and more direct derivation

of the value of the diffusion constant, more similar in spirit to the approach of [15], though

of course at the linearized level the two methods are equivalent.

4. Summary and discussion

We have shown that the holographic description of a supersymmetric gauge theory plasma

allows to exhibit the presence of a collective fermionic excitations, the phonino, whose ex-

istence can be predicted on general grounds; this excitation propagates like a sound wave,

with a characteristic dispersion relation; the holographic method allows us to compute the

lowest order terms in the dispersion relation, related to the speed and the attenuation. The

results are valid in the limit of strong coupling. We find a finite value for the supercharge

diffusion constant in this limit. The same was true for the other transport coefficients,

like the shear viscosity and the R-charge diffusion constants, whose perturbative estimates

indicated a vanishing value at infinite coupling. To our knowledge a perturbative calcula-

tion of Ds in a gauge theory has not been done. In this paper we have studied only the

longitudinal part of the correlators, that involves the density fluctuations. The transverse

part could also be considered, and although it should not contain propagating modes, it

should be possible to extract the value of the diffusion constant via a Kubo formula (see

the footnote 32 in [8]). This would provide yet another confirmation of our result.

It is tempting to speculate that Ds may have a universality property analogous to

the shear viscosity, namely it has the same value in all supersymmetric strongly coupled

theories with a dual gravity description. It should not be too difficult to prove this using

the methods of [15] or in the membrane paradigm (see [16]).
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A. Gamma matrices

We will use the following explicit representation of the five-dimensional flat gamma-matrices

as 2x2-block matrices:

γ1 = i

(

0 1

1 0

)

γk+1 = i

(

0 σk

−σk 0

)

, k = 1, 2, 3

γ5 =

(

1 0

0 −1

)

, (A.1)
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where σk are the usual Pauli matrices. They satisfy {γi, γj} = 2ηij with ηij =

diag(−1, 1, 1, 1, 1). Notice that we call 1 the time component.

In the text we often write a gamma matrix acting on a chiral spinor, it is then un-

derstood that the matrix should be replaced by the corresponding block with the right

chirality: (γiψ)α = (σi)αβ̇ψ
β̇ . Chiral indices can be raised and lowered with ǫαβ, ǫα̇β̇.

B. Gamma-tracelessness

We follow the computation in [13]: Using the identity Γµρσ = ΓµΓρΓσ − gµρΓσ − gρσΓµ +

gµσΓρ, and that [Dµ,Γν ] = 0, we find

Γµ 6D(Γ · Ψ) −Dµ(Γ · Ψ) − ΓµD · Ψ + 6DΨµ −mΓµνΨν = 0 . (B.1)

Contracting the last equation with Γµ we find the relation

6D(Γ · Ψ) −D · Ψ =
d− 1

d− 2
mΓ · Ψ . (B.2)

This can be plugged back in (B.1) to give, in d = 5,

Γν(DνΨµ −DµΨν) +
m

2
ΓνΓµΨν +

5m

6
ΓµΓνΨν = 0 . (B.3)

Applying Dµ to (B.1) we have

6D 6D(Γ · Ψ) −D2(Γ · Ψ) − 6DD · Ψ +Dµ 6DΨµ −mΓµνDµΨν = 0 . (B.4)

Using 6D 6D −D2 =
1

2
Γµν [Dµ,Dν ] one can rewrite this as

1

2
Γµν [Dµ,Dν ]Γ · Ψ + Γν [Dµ,Dν ]Ψµ −m(6DΓ · Ψ −D · Ψ) = 0 , (B.5)

Using once again (B.2) and that the curvature tensor acts on a spinor as

[Dµ,Dν ]ξ =
1

4
R ab

µν (γabξ) = −1

4
Rµνρσ(Γρσξ)

we find

Rµνρσ

(

−1

8
ΓµνΓρσΓ · Ψ − 1

4
ΓνΓρσΨµ

)

+RνσΓνΨσ − d− 1

d− 2
m2 Γ · Ψ = 0 . (B.6)

After some gamma-matrix algebra, one can see that the expression involves in fact only

the Ricci tensor

Rµν = gρσRµρσν = Λgµν .

Finally we obtain (3.13).
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C. Solution of the e.o.m. to first order

X1 =

{

− 1

f3/4(1+f)1/4
iu9/4

(

−2+
√

f
)

(

C1−
1

72
i

(

24
√

1+
√
f
(

8q (−1+
√
f
)

+3
(

2+
√
f
)w)α0

−3+u2+3
√
f

+

2

(

18wLog[f ]+32
√

3qLog
[

2−
√

f
]

−72wLog

[

1+

√

1+
√

f

]

−

18
√

2qLog

[√
2−
√

1+
√
f√

2+
√

1+
√
f

]

−27
√

2wLog

[√
2−
√

1+
√
f√

2+
√

1+
√
f

]

−

64
√

3qLog

[√
3+

√

1+
√

f

])

α0+64
√

3qLog

[√
3+
√

1+
√
f√

3−
√

1+
√
f

]

α0

−36q√1+
√
f (α0−iβ0)

−1+
√
f

+
64q√1+

√
f (2α0−iβ0)

−2+
√
f

+

9
√

2qLog

[√
2−
√

1+
√
f√

2+
√

1+
√
f

]

(5α0−iβ0)− 8q (α0+iβ0)
√

1+
√
f

))

,

1

f3/4
u7/4

(

1+
√

f
)1/4 (

2+
√

f
)

(

C2+
1

72

(

216i
√

1−√
fwα0

1+
√
f

− 96iu(2q+3w)α0
√

1+
√
f
(

2+
√
f
)
+

72
√

2
(

−i+
√

2
)wLog

[

1−
√

1−√
f
]

α0

2i+
√

2
−

18i
√

2(2q+3w)

(

Log
[

1+
√

f
]

−2Log

[√
2−
√

1−
√

f

])

α0+

72iwLog

[

1+

√

1−
√

f

]

α0+
8iq (α0+iβ0)
√

1−√
f

−

36q√1−√
f (iα0+β0)

1+
√
f

+
64qu (2iα0+β0)
√

1+
√
f
(

2+
√
f
)
+

9
√

2q(Log
[

1+
√

f
]

−2Log

[√
2−
√

1−
√

f

])

(5iα0+β0)

))

,

−u
1/4
(

1+
√
f
)1/4

72f1/4

(

72

√

1+
√

f
(

C3−iC1

√

f
)

+

(

9
√

2

√

1+
√

f(q−6w)Log

[√
2−
√

1+
√

f

]

−

3

(

92q+24w+3
√

2

√

1+
√

f(q−6w)Log

[√
2+

√

1+
√

f

])

+

√

f

(

−180q+72w−36

√

1+
√

fwLog[f ]−64
√

3q√1+
√

fLog
[

2−
√

f
]

−
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9
√

2q√1+
√

fLog

[√
2−
√

1+
√

f

]

+54
√

2

√

1+
√

fwLog

[√
2−
√

1+
√

f

]

+

64
√

3q√1+
√

fLog

[√
3−
√

1+
√

f

]

+144

√

1+
√

fwLog

[

1+

√

1+
√

f

]

+

9
√

2q√1+
√

fLog

[√
2+

√

1+
√

f

]

−54
√

2

√

1+
√

fwLog

[√
2+

√

1+
√

f

]

+

64
√

3q√1+
√

fLog

[√
3+

√

1+
√

f

]))

α0+

3i

(

−20q+12q√f−48w+3
√

2q(−1+
√

f
)

√

1+
√

f

Log

[√
2−
√

1+
√

f

]

−24

√

1+
√

fwLog

[

−1+

√

1+
√

f

]

+

24

√

1+
√

fwLog

[

1+

√

1+
√

f

]

+3
√

2q√1+
√

fLog

[√
2+

√

1+
√

f

]

−

3
√

2q√f (1+
√

f
)

Log

[√
2+

√

1+
√

f

]

)

β0

)

,

1

18f1/4
(

1+
√
f
)3/4

iu7/4

(

18C4+i

(

18C2

√

f−18i
√

fwLog

[

1−
√

1−
√

f

]

α0+

18i
√

fwLog

[

1+

√

1−
√

f

]

α0−
9
(

−i+
√

2
)√

fLog
[

1+
√
f
]

((q−6w)α0−iqβ0)

2
(

2i+
√

2
) +

1

2i+
√

2
9
(

−i+
√

2
)

√

fLog

[√
2−
√

1−
√

f

]

((q−6w)α0−iqβ0)−i
√

1−
√

f ((31q−126w)α0−23iqβ0)+

45

2
√

2
Log

[√
2+
√

1−√
f√

2−
√

1−√
f

]

(i(q−6w)α0+qβ0)+
1

√

1−√
f

4
(

−i
(

−25q+
√

f(19q−36w)+27w)α0+
(

q
(

2−8
√

f
)

−9w) β0

)

+

18

(

−i
√

2(q−6w)Log

[√
2+
√

1−√
f

√

1+
√
f

]

α0+

(wLog

[

1+
√

1−√
f

1−
√

1−√
f

]

−
√

2qLog

[√
2+
√

1−√
f

√

1+
√
f

])

β0

)))}

;
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